探讨人工智能、深度学习、大数据等术语的定义

中国IDCl圈1月27日报道:计算机运算对于上世纪80年代的我们来说是件非常兴奋的事,还记得我们第一次启动386DX处理器的场景。对,是”DX”,不是”MX”。尽管没人能够正确说出“DX”在数学或其它方面的优势是什么,但我们仍然会付出额外的200美元在Super VGA图形卡上安装16MHz的386DX,然后让那个坏男孩上钩,去CompuServe购买快如闪电的14,400 波特的U.S. Robotics “Sportster”调制解调器。在AI Gore创建因特网之前这很好,在那之后,一切都变了。个人计算机已经不再酷了,所有都是与“云”、“大数据”以及“深度学习”有关的东西。这些新术语让你困惑了?我们也是,那么让我们一起去重新定义这些术语,并看看他们对投资者又意味着什么。

为富裕等地区用户提供了全套网页设计制作服务,及富裕网站建设行业解决方案。主营业务为成都网站设计、成都网站建设、富裕网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

“The cloud(云计算)”——在这里,这个概念并不是指购买应用然后将其安装至你的计算机上,而是根据你的需求租赁应用并使用互联网访问它们。就是这样,这就是“云计算”。你可能听过“software as a service(软件即服务)”这个术语,它有个很酷的缩写“Saas”。本质上是一样的。它是一种集中式托管软件,可以通过订阅来获得服务。如今这条船已经开始为投资者扬帆起航,CRM Saas提供商Salesforce.com表示在10年里返利高达780%。对于投资者而言,“云计算”和“Saas”已经是过时的新闻了,他们正在寻找计算领域中下一个大目标。

“Big Data(大数据)”——“大数据”指的是新技术带来的海量数据,比如“物联网”和基因组学。这些数据集如此之大,如此复杂,以至于我们不能用传统的应用程序对其进行分析。我们需要建立新的应用程序来分析这些“大数据”。在最近一篇文章里,我们看了看5大数据存储公司的收入,寻找“picks and shovels(镐和铲子,指的是那些在特定行业或商品中提供重要工具、产品或服务的公司)”在这个行业中扮演的角色。这些公司做的投资,似乎只有一家可行。也许如今这个领域大的玩家是Palantir Technologies,一家估值高达250亿美元的私人企业,这应该更能诠释“大数据”的含义。众所周知,存储数据是一回事,分析它则又是另一回事,因为现在80%的数据都不是结构化数据,如新闻文章,研究报告,和企业数据。这将引出下一个术语。

“Deep Learning(深度学习)”——本质上,我们可以让计算机存储所有非结构化的大数据,然后使用不同的方法,如“人工神经网络”,来模仿人类大脑的工作方式。深度学习在“大数据”中使用算法寻找复杂的关系,然后我们进一步完善这些算法,使它们表现的更加出色。计算机可以在已有经验的基础上随着时间不断学习更多的能力,就像大脑会自然而然地做一些事情,也称作“认知计算”。我们大概都听说过IBM的认知计算平台Watson,它将深度学习技术应用到翻译以及语音和文本的相互转换领域。虽然还没有人纯粹地将“深度学习”应用到我们熟知的股票行业,但如今已有相当多的初创公司正在尝试将深度学习应用到不同行业。深度学习或认知计算是人工智能的一种形式,它将带我们进入下一个术语。

Artificial Intelligence(人工智能)——在这个领域,计算机开始处理数据,并从中推断复杂的关系,就像人类那样。那么我们应该如何去衡量结果的好坏呢?最常用的方法也就是“图灵测试”,尽管一些研究人员认为这是业余爱好者才会感兴趣的问题。虽然IBM是人工智能专利的领先持有者(500+),但在人工智能领域仍有许多其它初创公司,比如我们之前强调的Vicarious公司,几乎所有人都支持它。Vicarious公司主要是创建软件代码,然后使用相对小的数据量和计算能力来复制人类大脑。然而现在使用极小的计算能力很有意义,如果我们可以掌握量子计算,那么这将不是一个问题。

Quantum Computing(量子计算)——我们可以利用奇妙的量子物理,建立一台比我们今天所拥有的任何东西更为强大的计算机。我们可以开始讨论“量子纠缠(quantum entanglement)”以及把东西冻结到绝对零度需要什么,可谁会关心这些呢。量子计算有什么潜力?我们今天又在哪里呢?就在最近,谷歌宣布,他们利用D-Wave 2来解决一个优化问题(有1000个变量),比传统计算机快1亿倍。形象的来说,传统计算机需要处理10000年的事情D-Wave 2只需1秒就能完成。所以你该如何投资量子计算?商界没有太多的游戏,但在这篇文章我们会给你提供一个投资方式。

预计在未来几年所有的这些技术都会有巨幅增长,那么散户投资者怎么在这里赚钱呢?很好,IBM这个名字在不断出现,那么在这些话题上投资可行么?随着2014年920亿美元的收入,“大数据”和Watson的贡献对目前的底线有着轻微的影响。也就是说,我们爱IBM 3.8%的股息,而该股息却由不到50%的派息率保护。

未来零售投资者应该寻找的是未来的科技IPOs,其中包括一些主题。正如我们在最近一篇文章中强调的,CB Insights数据显示有两家“大数据”初创公司有可能在2016年IPO(全称Initial Public Offerings,首次公开募股)。事实上,CB Insights已经确定了超过530家科技初创公司可能在2016年IPO,其中许多公司都与“大数据”有关。

网站题目:探讨人工智能、深度学习、大数据等术语的定义
标题URL:/article38/chiisp.html

成都网站建设公司_创新互联,为您提供搜索引擎优化移动网站建设企业建站电子商务云服务器网站设计公司

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

搜索引擎优化