kube-proxy怎么使用

这篇文章主要讲解了“kube-proxy怎么使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“kube-proxy怎么使用”吧!

成都创新互联专注于海南网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供海南营销型网站建设,海南网站制作、海南网页设计、海南网站官网定制、成都小程序开发服务,打造海南网络公司原创品牌,更为您提供海南网站排名全网营销落地服务。

##源码目录结构分析

cmd/kube-proxy      //负责kube-proxy的创建,启动的入口
.
├── app
│   ├── conntrack.go    //linux kernel的nf_conntrack-sysctl的interface定义,更多关于conntracker的定义请看https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
│   ├── options
│   │   └── options.go    //kube-proxy的参数定义ProxyServerConfig及相关方法
│   ├── server.go    //ProxyServer结构定义及其创建(NewProxyServerDefault)和运行(Run)的方法。
│   └── server_test.go
└── proxy.go    //kube-proxy的main方法


pkg/proxy
.
├── OWNERS
├── config
│   ├── api.go    //给proxy配置Service和Endpoint的Reflectors和Cache.Store
│   ├── api_test.go
│   ├── config.go    //定义ServiceUpdate,EndpointUpdate结构体以及ServiceConfigHandler,EndpointConfigHandler来处理Service和Endpoint的Update
│   ├── config_test.go
│   └── doc.go
├── doc.go
├── healthcheck    //负责service listener和endpoint的health check,add/delete请求。
│   ├── api.go
│   ├── doc.go
│   ├── healthcheck.go
│   ├── healthcheck_test.go
│   ├── http.go
│   ├── listener.go
│   └── worker.go
├── iptables    //proxy mode为iptables的实现
│   ├── proxier.go
│   └── proxier_test.go
├── types.go
├── userspace    //proxy mode为userspace的实现
│   ├── loadbalancer.go
│   ├── port_allocator.go
│   ├── port_allocator_test.go
│   ├── proxier.go
│   ├── proxier_test.go
│   ├── proxysocket.go
│   ├── rlimit.go
│   ├── rlimit_windows.go
│   ├── roundrobin.go
│   ├── roundrobin_test.go
│   └── udp_server.go
└── winuserspace    //windows OS时,proxy mode为userspace的实现
    ├── loadbalancer.go
    ├── port_allocator.go
    ├── port_allocator_test.go
    ├── proxier.go
    ├── proxier_test.go
    ├── proxysocket.go
    ├── roundrobin.go
    ├── roundrobin_test.go
    └── udp_server.go

##内部实现模块逻辑图 kube-proxy怎么使用

##源码分析

###main kube-proxy的main入口在:cmd/kube-proxy/proxy.go:39

func main() {
	//创建kube-proxy的默认config对象
	config := options.NewProxyConfig()
	//用kube-proxy命令行的参数替换默认参数
	config.AddFlags(pflag.CommandLine)

	flag.InitFlags()
	logs.InitLogs()
	defer logs.FlushLogs()

	verflag.PrintAndExitIfRequested()
	
	//根据config创建ProxyServer
	s, err := app.NewProxyServerDefault(config)
	if err != nil {
		fmt.Fprintf(os.Stderr, "%v\n", err)
		os.Exit(1)
	}

	//执行Run方法让kube-proxy开始干活了
	if err = s.Run(); err != nil {
		fmt.Fprintf(os.Stderr, "%v\n", err)
		os.Exit(1)
	}
}

main方法中,我们重点关注app.NewProxyServerDefault(config)创建ProxyServer和Run方法。

###创建ProxyServer NewProxyServerDefault负责根据提供的config参数创建一个新的ProxyServer对象,其代码比较长,逻辑相对复杂,下面会挑重点说一下。

cmd/kube-proxy/app/server.go:131

func NewProxyServerDefault(config *options.ProxyServerConfig) (*ProxyServer, error) {
	...

	// Create a iptables utils.
	execer := exec.New()

	if runtime.GOOS == "windows" {
		netshInterface = utilnetsh.New(execer)
	} else {
		dbus = utildbus.New()
		iptInterface = utiliptables.New(execer, dbus, protocol)
	}

	...
	//设置OOM_SCORE_ADJ
	var oomAdjuster *oom.OOMAdjuster
	if config.OOMScoreAdj != nil {
		oomAdjuster = oom.NewOOMAdjuster()
		if err := oomAdjuster.ApplyOOMScoreAdj(0, int(*config.OOMScoreAdj)); err != nil {
			glog.V(2).Info(err)
		}
	}
	
	...
	
	// Create a Kube Client
	...

	// 创建event Broadcaster和event recorder
	hostname := nodeutil.GetHostname(config.HostnameOverride)
	eventBroadcaster := record.NewBroadcaster()
	recorder := eventBroadcaster.NewRecorder(v1.EventSource{Component: "kube-proxy", Host: hostname})

	//定义proxier和endpointsHandler,分别用于处理services和endpoints的update event。
	var proxier proxy.ProxyProvider
	var endpointsHandler proxyconfig.EndpointsConfigHandler

	//从config中获取proxy mode
	proxyMode := getProxyMode(string(config.Mode), client.Core().Nodes(), hostname, iptInterface, iptables.LinuxKernelCompatTester{})
	
	// proxy mode为iptables场景
	if proxyMode == proxyModeIPTables {
		glog.V(0).Info("Using iptables Proxier.")
		if config.IPTablesMasqueradeBit == nil {
			// IPTablesMasqueradeBit must be specified or defaulted.
			return nil, fmt.Errorf("Unable to read IPTablesMasqueradeBit from config")
		}
		
		//调用pkg/proxy/iptables/proxier.go:222中的iptables.NewProxier来创建proxier,赋值给前面定义的proxier和endpointsHandler,表示由该proxier同时负责service和endpoint的event处理。
		proxierIPTables, err := iptables.NewProxier(iptInterface, utilsysctl.New(), execer, config.IPTablesSyncPeriod.Duration, config.IPTablesMinSyncPeriod.Duration, config.MasqueradeAll, int(*config.IPTablesMasqueradeBit), config.ClusterCIDR, hostname, getNodeIP(client, hostname))
		if err != nil {
			glog.Fatalf("Unable to create proxier: %v", err)
		}
		proxier = proxierIPTables
		endpointsHandler = proxierIPTables
		// No turning back. Remove artifacts that might still exist from the userspace Proxier.
		glog.V(0).Info("Tearing down userspace rules.")
		userspace.CleanupLeftovers(iptInterface)
	} 
	// proxy mode为userspace场景
	else {
		glog.V(0).Info("Using userspace Proxier.")
		// This is a proxy.LoadBalancer which NewProxier needs but has methods we don't need for
		// our config.EndpointsConfigHandler.
		loadBalancer := userspace.NewLoadBalancerRR()
		// set EndpointsConfigHandler to our loadBalancer
		endpointsHandler = loadBalancer

		var proxierUserspace proxy.ProxyProvider
		
		// windows OS场景下,调用pkg/proxy/winuserspace/proxier.go:146的winuserspace.NewProxier来创建proxier。
		if runtime.GOOS == "windows" {
			proxierUserspace, err = winuserspace.NewProxier(
				loadBalancer,
				net.ParseIP(config.BindAddress),
				netshInterface,
				*utilnet.ParsePortRangeOrDie(config.PortRange),
				// TODO @pires replace below with default values, if applicable
				config.IPTablesSyncPeriod.Duration,
				config.UDPIdleTimeout.Duration,
			)
		} 
		
		// linux OS场景下,调用pkg/proxy/userspace/proxier.go:143的userspace.NewProxier来创建proxier。
		else {
			proxierUserspace, err = userspace.NewProxier(
				loadBalancer,
				net.ParseIP(config.BindAddress),
				iptInterface,
				*utilnet.ParsePortRangeOrDie(config.PortRange),
				config.IPTablesSyncPeriod.Duration,
				config.IPTablesMinSyncPeriod.Duration,
				config.UDPIdleTimeout.Duration,
			)
		}
		if err != nil {
			glog.Fatalf("Unable to create proxier: %v", err)
		}
		proxier = proxierUserspace
		// Remove artifacts from the pure-iptables Proxier, if not on Windows.
		if runtime.GOOS != "windows" {
			glog.V(0).Info("Tearing down pure-iptables proxy rules.")
			iptables.CleanupLeftovers(iptInterface)
		}
	}

	// Add iptables reload function, if not on Windows.
	if runtime.GOOS != "windows" {
		iptInterface.AddReloadFunc(proxier.Sync)
	}

	// Create configs (i.e. Watches for Services and Endpoints)
	// 创建serviceConfig负责service的watchforUpdates
	serviceConfig := proxyconfig.NewServiceConfig()
	
	//给serviceConfig注册proxier,既添加对应的listener用来处理service update时逻辑。
	serviceConfig.RegisterHandler(proxier)

	// 创建endpointsConfig负责endpoint的watchforUpdates
	endpointsConfig := proxyconfig.NewEndpointsConfig()
	
	//给endpointsConfig注册endpointsHandler,既添加对应的listener用来处理endpoint update时的逻辑。
	endpointsConfig.RegisterHandler(endpointsHandler)

	//NewSourceAPI creates config source that watches for changes to the services and endpoints.
	//NewSourceAPI通过ListWatch apiserver的Service和endpoint,并周期性的维护serviceStore和endpointStore的更新
	proxyconfig.NewSourceAPI(
		client.Core().RESTClient(),
		config.ConfigSyncPeriod,
		serviceConfig.Channel("api"), //Service Update Channel
		endpointsConfig.Channel("api"),  //endpoint update channel
	)

	...

	//把前面创建的对象作为参数,构造出ProxyServer对象。
	return NewProxyServer(client, config, iptInterface, proxier, eventBroadcaster, recorder, conntracker, proxyMode)
}

NewProxyServerDefault中的核心逻辑我都已经在上述代码中添加了注释,其中有几个地方需要我们再深入跟进去看看:proxyconfig.NewServiceConfig,proxyconfig.NewEndpointsConfig,serviceConfig.RegisterHandler,endpointsConfig.RegisterHandler,proxyconfig.NewSourceAPI。

####proxyconfig.NewServiceConfig 我们对ServiceConfig的代码分析一遍,EndpointsConfig的代码则类似。

pkg/proxy/config/config.go:192
func NewServiceConfig() *ServiceConfig {
	// 创建updates channel
	updates := make(chan struct{}, 1)
	
	// 构建serviceStore对象
	store := &serviceStore{updates: updates, services: make(map[string]map[types.NamespacedName]api.Service)}
	mux := config.NewMux(store)
	
	// 新建Broadcaster,在后续的serviceConfig.RegisterHandler会注册该Broadcaster的listener。
	bcaster := config.NewBroadcaster()
	
	//启动协程,马上开始watch updates channel
	go watchForUpdates(bcaster, store, updates)
	
	return &ServiceConfig{mux, bcaster, store}
}

下面我们再跟进watchForUpdates去看看。

pkg/proxy/config/config.go:292
func watchForUpdates(bcaster *config.Broadcaster, accessor config.Accessor, updates <-chan struct{}) {
	for true {
		<-updates
		bcaster.Notify(accessor.MergedState())
	}
}

watchForUpdates就是一直在watch updates channel,如果有数据,则立刻由该Broadcaster Notify到注册的listeners。 Notify的代码如下,可见,它负责将数据通知给所有的listener,并调用各个listener的OnUpdate方法。

pkg/util/config/config.go:133
// Notify notifies all listeners.
func (b *Broadcaster) Notify(instance interface{}) {
	b.listenerLock.RLock()
	listeners := b.listeners
	b.listenerLock.RUnlock()
	for _, listener := range listeners {
		listener.OnUpdate(instance)
	}
}

func (f ListenerFunc) OnUpdate(instance interface{}) {
	f(instance)
}

####serviceConfig.RegisterHandler 上面分析的proxyconfig.NewServiceConfig负责创建ServiceConfig,开始watch updates channel了,当从channel中取到值的时候,Broadcaster就会通知listener进行处理。serviceConfig.RegisterHandler正是负责给Broadcaster注册listener的,其代码如下。

pkg/proxy/config/config.go:205

func (c *ServiceConfig) RegisterHandler(handler ServiceConfigHandler) {
	//给ServiceConfig的Broadcaster注册listener。
	c.bcaster.Add(config.ListenerFunc(func(instance interface{}) {
		glog.V(3).Infof("Calling handler.OnServiceUpdate()")
		handler.OnServiceUpdate(instance.([]api.Service))
	}))
}

上面分析proxyconfig.NewServiceConfig时可知,当从updates channel中取到值的时候,最终会调用对应的ListenerFunc(instance)进行处理,在这里,也就是调用:

func(instance interface{}) {
		glog.V(3).Infof("Calling handler.OnServiceUpdate()")
		handler.OnServiceUpdate(instance.([]api.Service))
	}

即调用到handler.OnServiceUpdate。每种proxymode对应的proxier都有对应的handler.OnServiceUpdate接口实现,我们以iptables mode为例,看看handler.OnServiceUpdate的实现:

pkg/proxy/iptables/proxier.go:428
func (proxier *Proxier) OnServiceUpdate(allServices []api.Service) {
	...

	proxier.syncProxyRules()
	proxier.deleteServiceConnections(staleUDPServices.List())

}

因此,最终关键的逻辑都转向了proxier.syncProxyRules(),从我们上面给出的内部模块交互图也能看得出来。对于proxier.syncProxyRules(),我们放到后面来详细讨论,现在你只要知道proxier.syncProxyRules()负责将proxy中缓存的service/endpoint同步更新到iptables中生成对应Chain和NAT Rules。

####proxyconfig.NewEndpointsConfig endpointsConfig的逻辑和serviceConfig的类似,在这里只给出对应代码,不再跟进分析。

pkg/proxy/config/config.go:84

func NewEndpointsConfig() *EndpointsConfig {
	// The updates channel is used to send interrupts to the Endpoints handler.
	// It's buffered because we never want to block for as long as there is a
	// pending interrupt, but don't want to drop them if the handler is doing
	// work.
	updates := make(chan struct{}, 1)
	store := &endpointsStore{updates: updates, endpoints: make(map[string]map[types.NamespacedName]api.Endpoints)}
	mux := config.NewMux(store)
	bcaster := config.NewBroadcaster()
	go watchForUpdates(bcaster, store, updates)
	return &EndpointsConfig{mux, bcaster, store}
}

####endpointsConfig.RegisterHandler

pkg/proxy/config/config.go:97

func (c *EndpointsConfig) RegisterHandler(handler EndpointsConfigHandler) {
	c.bcaster.Add(config.ListenerFunc(func(instance interface{}) {
		glog.V(3).Infof("Calling handler.OnEndpointsUpdate()")
		handler.OnEndpointsUpdate(instance.([]api.Endpoints))
	}))
}

####proxyconfig.NewSourceAPI

proxyconfig.NewSourceAPI是很关键的,它负责给service updates channel和endpoint updates channel配置数据源,它是通过周期性的List和Watch kube-apiserver中的all service and endpoint来提供数据的,发给对应的channel。默认的List周期是15min,可通过--config-sync-period修改。下面来看其具体代码:

func NewSourceAPI(c cache.Getter, period time.Duration, servicesChan chan<- ServiceUpdate, endpointsChan chan<- EndpointsUpdate) {
	servicesLW := cache.NewListWatchFromClient(c, "services", api.NamespaceAll, fields.Everything())
	cache.NewReflector(servicesLW, &api.Service{}, NewServiceStore(nil, servicesChan), period).Run()

	endpointsLW := cache.NewListWatchFromClient(c, "endpoints", api.NamespaceAll, fields.Everything())
	cache.NewReflector(endpointsLW, &api.Endpoints{}, NewEndpointsStore(nil, endpointsChan), period).Run()
}

// NewServiceStore creates an undelta store that expands updates to the store into
// ServiceUpdate events on the channel. If no store is passed, a default store will
// be initialized. Allows reuse of a cache store across multiple components.
func NewServiceStore(store cache.Store, ch chan<- ServiceUpdate) cache.Store {
	fn := func(objs []interface{}) {
		var services []api.Service
		for _, o := range objs {
			services = append(services, *(o.(*api.Service)))
		}
		ch <- ServiceUpdate{Op: SET, Services: services}
	}
	if store == nil {
		store = cache.NewStore(cache.MetaNamespaceKeyFunc)
	}
	return &cache.UndeltaStore{
		Store:    store,
		PushFunc: fn,
	}
}

// NewEndpointsStore creates an undelta store that expands updates to the store into
// EndpointsUpdate events on the channel. If no store is passed, a default store will
// be initialized. Allows reuse of a cache store across multiple components.
func NewEndpointsStore(store cache.Store, ch chan<- EndpointsUpdate) cache.Store {
	fn := func(objs []interface{}) {
		var endpoints []api.Endpoints
		for _, o := range objs {
			endpoints = append(endpoints, *(o.(*api.Endpoints)))
		}
		ch <- EndpointsUpdate{Op: SET, Endpoints: endpoints}
	}
	if store == nil {
		store = cache.NewStore(cache.MetaNamespaceKeyFunc)
	}
	return &cache.UndeltaStore{
		Store:    store,
		PushFunc: fn,
	}
}

代码很简单,不需要过多解释。

###执行Run开始工作 创建完ProxyServer后,就执行Run方法开始工作了,它主要负责周期性(default 30s)的同步proxy中的services/endpionts到iptables中生成对应Chain and NAT Rules。

cmd/kube-proxy/app/server.go:308
func (s *ProxyServer) Run() error {
	...

	// Start up a webserver if requested
	if s.Config.HealthzPort > 0 {
		http.HandleFunc("/proxyMode", func(w http.ResponseWriter, r *http.Request) {
			fmt.Fprintf(w, "%s", s.ProxyMode)
		})
		configz.InstallHandler(http.DefaultServeMux)
		go wait.Until(func() {
			err := http.ListenAndServe(s.Config.HealthzBindAddress+":"+strconv.Itoa(int(s.Config.HealthzPort)), nil)
			if err != nil {
				glog.Errorf("Starting health server failed: %v", err)
			}
		}, 5*time.Second, wait.NeverStop)
	}

	...

	// Just loop forever for now...
	s.Proxier.SyncLoop()
	return nil
}

Run方法关键代码很简单,就是执行对应proxier的SyncLoop()。我们还是以iptables mode为例,看看它是如何实现SyncLoop()的:

pkg/proxy/iptables/proxier.go:416
// SyncLoop runs periodic work.  This is expected to run as a goroutine or as the main loop of the app.  It does not return.
func (proxier *Proxier) SyncLoop() {
	t := time.NewTicker(proxier.syncPeriod)
	defer t.Stop()
	for {
		<-t.C
		glog.V(6).Infof("Periodic sync")
		proxier.Sync()
	}
}

SyncLoop中,通过设置定时器,默认每30s会执行一次proxier.Sync(),可以通过--iptables-sync-period修改默认时间。那我们继续跟进Sync()的代码:

pkg/proxy/iptables/proxier.go:409
// Sync is called to immediately synchronize the proxier state to iptables
func (proxier *Proxier) Sync() {
	proxier.mu.Lock()
	defer proxier.mu.Unlock()
	proxier.syncProxyRules()
}

可见,最终还是调用proxier.syncProxyRules()。前一节中创建ProxyServer的分析也是一样,最终watch到service/endpoint有更新时,都会调用到proxier.syncProxyRules()。那下面我们就来看看proxier.syncProxyRules()的代码。

###proxier.syncProxyRules

下面的proxier.syncProxyRules代码是iptables mode对应的实现。userspace mode的代码我就不贴了。

pkg/proxy/iptables/proxier.go:791
// This is where all of the iptables-save/restore calls happen.
// The only other iptables rules are those that are setup in iptablesInit()
// assumes proxier.mu is held
func (proxier *Proxier) syncProxyRules() {
	if proxier.throttle != nil {
		proxier.throttle.Accept()
	}
	start := time.Now()
	defer func() {
		glog.V(4).Infof("syncProxyRules took %v", time.Since(start))
	}()
	// don't sync rules till we've received services and endpoints
	if !proxier.haveReceivedEndpointsUpdate || !proxier.haveReceivedServiceUpdate {
		glog.V(2).Info("Not syncing iptables until Services and Endpoints have been received from master")
		return
	}
	glog.V(3).Infof("Syncing iptables rules")

	// Create and link the kube services chain.
	{
		tablesNeedServicesChain := []utiliptables.Table{utiliptables.TableFilter, utiliptables.TableNAT}
		for _, table := range tablesNeedServicesChain {
			if _, err := proxier.iptables.EnsureChain(table, kubeServicesChain); err != nil {
				glog.Errorf("Failed to ensure that %s chain %s exists: %v", table, kubeServicesChain, err)
				return
			}
		}

		tableChainsNeedJumpServices := []struct {
			table utiliptables.Table
			chain utiliptables.Chain
		}{
			{utiliptables.TableFilter, utiliptables.ChainOutput},
			{utiliptables.TableNAT, utiliptables.ChainOutput},
			{utiliptables.TableNAT, utiliptables.ChainPrerouting},
		}
		comment := "kubernetes service portals"
		args := []string{"-m", "comment", "--comment", comment, "-j", string(kubeServicesChain)}
		for _, tc := range tableChainsNeedJumpServices {
			if _, err := proxier.iptables.EnsureRule(utiliptables.Prepend, tc.table, tc.chain, args...); err != nil {
				glog.Errorf("Failed to ensure that %s chain %s jumps to %s: %v", tc.table, tc.chain, kubeServicesChain, err)
				return
			}
		}
	}

	// Create and link the kube postrouting chain.
	{
		if _, err := proxier.iptables.EnsureChain(utiliptables.TableNAT, kubePostroutingChain); err != nil {
			glog.Errorf("Failed to ensure that %s chain %s exists: %v", utiliptables.TableNAT, kubePostroutingChain, err)
			return
		}

		comment := "kubernetes postrouting rules"
		args := []string{"-m", "comment", "--comment", comment, "-j", string(kubePostroutingChain)}
		if _, err := proxier.iptables.EnsureRule(utiliptables.Prepend, utiliptables.TableNAT, utiliptables.ChainPostrouting, args...); err != nil {
			glog.Errorf("Failed to ensure that %s chain %s jumps to %s: %v", utiliptables.TableNAT, utiliptables.ChainPostrouting, kubePostroutingChain, err)
			return
		}
	}

	// Get iptables-save output so we can check for existing chains and rules.
	// This will be a map of chain name to chain with rules as stored in iptables-save/iptables-restore
	existingFilterChains := make(map[utiliptables.Chain]string)
	iptablesSaveRaw, err := proxier.iptables.Save(utiliptables.TableFilter)
	if err != nil { // if we failed to get any rules
		glog.Errorf("Failed to execute iptables-save, syncing all rules: %v", err)
	} else { // otherwise parse the output
		existingFilterChains = utiliptables.GetChainLines(utiliptables.TableFilter, iptablesSaveRaw)
	}

	existingNATChains := make(map[utiliptables.Chain]string)
	iptablesSaveRaw, err = proxier.iptables.Save(utiliptables.TableNAT)
	if err != nil { // if we failed to get any rules
		glog.Errorf("Failed to execute iptables-save, syncing all rules: %v", err)
	} else { // otherwise parse the output
		existingNATChains = utiliptables.GetChainLines(utiliptables.TableNAT, iptablesSaveRaw)
	}

	filterChains := bytes.NewBuffer(nil)
	filterRules := bytes.NewBuffer(nil)
	natChains := bytes.NewBuffer(nil)
	natRules := bytes.NewBuffer(nil)

	// Write table headers.
	writeLine(filterChains, "*filter")
	writeLine(natChains, "*nat")

	// Make sure we keep stats for the top-level chains, if they existed
	// (which most should have because we created them above).
	if chain, ok := existingFilterChains[kubeServicesChain]; ok {
		writeLine(filterChains, chain)
	} else {
		writeLine(filterChains, utiliptables.MakeChainLine(kubeServicesChain))
	}
	if chain, ok := existingNATChains[kubeServicesChain]; ok {
		writeLine(natChains, chain)
	} else {
		writeLine(natChains, utiliptables.MakeChainLine(kubeServicesChain))
	}
	if chain, ok := existingNATChains[kubeNodePortsChain]; ok {
		writeLine(natChains, chain)
	} else {
		writeLine(natChains, utiliptables.MakeChainLine(kubeNodePortsChain))
	}
	if chain, ok := existingNATChains[kubePostroutingChain]; ok {
		writeLine(natChains, chain)
	} else {
		writeLine(natChains, utiliptables.MakeChainLine(kubePostroutingChain))
	}
	if chain, ok := existingNATChains[KubeMarkMasqChain]; ok {
		writeLine(natChains, chain)
	} else {
		writeLine(natChains, utiliptables.MakeChainLine(KubeMarkMasqChain))
	}

	// Install the kubernetes-specific postrouting rules. We use a whole chain for
	// this so that it is easier to flush and change, for example if the mark
	// value should ever change.
	writeLine(natRules, []string{
		"-A", string(kubePostroutingChain),
		"-m", "comment", "--comment", `"kubernetes service traffic requiring SNAT"`,
		"-m", "mark", "--mark", proxier.masqueradeMark,
		"-j", "MASQUERADE",
	}...)

	// Install the kubernetes-specific masquerade mark rule. We use a whole chain for
	// this so that it is easier to flush and change, for example if the mark
	// value should ever change.
	writeLine(natRules, []string{
		"-A", string(KubeMarkMasqChain),
		"-j", "MARK", "--set-xmark", proxier.masqueradeMark,
	}...)

	// Accumulate NAT chains to keep.
	activeNATChains := map[utiliptables.Chain]bool{} // use a map as a set

	// Accumulate the set of local ports that we will be holding open once this update is complete
	replacementPortsMap := map[localPort]closeable{}

	// Build rules for each service.
	for svcName, svcInfo := range proxier.serviceMap {
		protocol := strings.ToLower(string(svcInfo.protocol))

		// Create the per-service chain, retaining counters if possible.
		svcChain := servicePortChainName(svcName, protocol)
		if chain, ok := existingNATChains[svcChain]; ok {
			writeLine(natChains, chain)
		} else {
			writeLine(natChains, utiliptables.MakeChainLine(svcChain))
		}
		activeNATChains[svcChain] = true

		svcXlbChain := serviceLBChainName(svcName, protocol)
		if svcInfo.onlyNodeLocalEndpoints {
			// Only for services with the externalTraffic annotation set to OnlyLocal
			// create the per-service LB chain, retaining counters if possible.
			if lbChain, ok := existingNATChains[svcXlbChain]; ok {
				writeLine(natChains, lbChain)
			} else {
				writeLine(natChains, utiliptables.MakeChainLine(svcXlbChain))
			}
			activeNATChains[svcXlbChain] = true
		} else if activeNATChains[svcXlbChain] {
			// Cleanup the previously created XLB chain for this service
			delete(activeNATChains, svcXlbChain)
		}

		// Capture the clusterIP.
		args := []string{
			"-A", string(kubeServicesChain),
			"-m", "comment", "--comment", fmt.Sprintf(`"%s cluster IP"`, svcName.String()),
			"-m", protocol, "-p", protocol,
			"-d", fmt.Sprintf("%s/32", svcInfo.clusterIP.String()),
			"--dport", fmt.Sprintf("%d", svcInfo.port),
		}
		if proxier.masqueradeAll {
			writeLine(natRules, append(args, "-j", string(KubeMarkMasqChain))...)
		}
		if len(proxier.clusterCIDR) > 0 {
			writeLine(natRules, append(args, "! -s", proxier.clusterCIDR, "-j", string(KubeMarkMasqChain))...)
		}
		writeLine(natRules, append(args, "-j", string(svcChain))...)

		// Capture externalIPs.
		for _, externalIP := range svcInfo.externalIPs {
			// If the "external" IP happens to be an IP that is local to this
			// machine, hold the local port open so no other process can open it
			// (because the socket might open but it would never work).
			if local, err := isLocalIP(externalIP); err != nil {
				glog.Errorf("can't determine if IP is local, assuming not: %v", err)
			} else if local {
				lp := localPort{
					desc:     "externalIP for " + svcName.String(),
					ip:       externalIP,
					port:     svcInfo.port,
					protocol: protocol,
				}
				if proxier.portsMap[lp] != nil {
					glog.V(4).Infof("Port %s was open before and is still needed", lp.String())
					replacementPortsMap[lp] = proxier.portsMap[lp]
				} else {
					socket, err := proxier.portMapper.OpenLocalPort(&lp)
					if err != nil {
						glog.Errorf("can't open %s, skipping this externalIP: %v", lp.String(), err)
						continue
					}
					replacementPortsMap[lp] = socket
				}
			} // We're holding the port, so it's OK to install iptables rules.
			args := []string{
				"-A", string(kubeServicesChain),
				"-m", "comment", "--comment", fmt.Sprintf(`"%s external IP"`, svcName.String()),
				"-m", protocol, "-p", protocol,
				"-d", fmt.Sprintf("%s/32", externalIP),
				"--dport", fmt.Sprintf("%d", svcInfo.port),
			}
			// We have to SNAT packets to external IPs.
			writeLine(natRules, append(args, "-j", string(KubeMarkMasqChain))...)

			// Allow traffic for external IPs that does not come from a bridge (i.e. not from a container)
			// nor from a local process to be forwarded to the service.
			// This rule roughly translates to "all traffic from off-machine".
			// This is imperfect in the face of network plugins that might not use a bridge, but we can revisit that later.
			externalTrafficOnlyArgs := append(args,
				"-m", "physdev", "!", "--physdev-is-in",
				"-m", "addrtype", "!", "--src-type", "LOCAL")
			writeLine(natRules, append(externalTrafficOnlyArgs, "-j", string(svcChain))...)
			dstLocalOnlyArgs := append(args, "-m", "addrtype", "--dst-type", "LOCAL")
			// Allow traffic bound for external IPs that happen to be recognized as local IPs to stay local.
			// This covers cases like GCE load-balancers which get added to the local routing table.
			writeLine(natRules, append(dstLocalOnlyArgs, "-j", string(svcChain))...)
		}

		// Capture load-balancer ingress.
		for _, ingress := range svcInfo.loadBalancerStatus.Ingress {
			if ingress.IP != "" {
				// create service firewall chain
				fwChain := serviceFirewallChainName(svcName, protocol)
				if chain, ok := existingNATChains[fwChain]; ok {
					writeLine(natChains, chain)
				} else {
					writeLine(natChains, utiliptables.MakeChainLine(fwChain))
				}
				activeNATChains[fwChain] = true
				// The service firewall rules are created based on ServiceSpec.loadBalancerSourceRanges field.
				// This currently works for loadbalancers that preserves source ips.
				// For loadbalancers which direct traffic to service NodePort, the firewall rules will not apply.

				args := []string{
					"-A", string(kubeServicesChain),
					"-m", "comment", "--comment", fmt.Sprintf(`"%s loadbalancer IP"`, svcName.String()),
					"-m", protocol, "-p", protocol,
					"-d", fmt.Sprintf("%s/32", ingress.IP),
					"--dport", fmt.Sprintf("%d", svcInfo.port),
				}
				// jump to service firewall chain
				writeLine(natRules, append(args, "-j", string(fwChain))...)

				args = []string{
					"-A", string(fwChain),
					"-m", "comment", "--comment", fmt.Sprintf(`"%s loadbalancer IP"`, svcName.String()),
				}

				// Each source match rule in the FW chain may jump to either the SVC or the XLB chain
				chosenChain := svcXlbChain
				// If we are proxying globally, we need to masquerade in case we cross nodes.
				// If we are proxying only locally, we can retain the source IP.
				if !svcInfo.onlyNodeLocalEndpoints {
					writeLine(natRules, append(args, "-j", string(KubeMarkMasqChain))...)
					chosenChain = svcChain
				}

				if len(svcInfo.loadBalancerSourceRanges) == 0 {
					// allow all sources, so jump directly to the KUBE-SVC or KUBE-XLB chain
					writeLine(natRules, append(args, "-j", string(chosenChain))...)
				} else {
					// firewall filter based on each source range
					allowFromNode := false
					for _, src := range svcInfo.loadBalancerSourceRanges {
						writeLine(natRules, append(args, "-s", src, "-j", string(chosenChain))...)
						// ignore error because it has been validated
						_, cidr, _ := net.ParseCIDR(src)
						if cidr.Contains(proxier.nodeIP) {
							allowFromNode = true
						}
					}
					// generally, ip route rule was added to intercept request to loadbalancer vip from the
					// loadbalancer's backend hosts. In this case, request will not hit the loadbalancer but loop back directly.
					// Need to add the following rule to allow request on host.
					if allowFromNode {
						writeLine(natRules, append(args, "-s", fmt.Sprintf("%s/32", ingress.IP), "-j", string(chosenChain))...)
					}
				}

				// If the packet was able to reach the end of firewall chain, then it did not get DNATed.
				// It means the packet cannot go thru the firewall, then mark it for DROP
				writeLine(natRules, append(args, "-j", string(KubeMarkDropChain))...)
			}
		}

		// Capture nodeports.  If we had more than 2 rules it might be
		// worthwhile to make a new per-service chain for nodeport rules, but
		// with just 2 rules it ends up being a waste and a cognitive burden.
		if svcInfo.nodePort != 0 {
			// Hold the local port open so no other process can open it
			// (because the socket might open but it would never work).
			lp := localPort{
				desc:     "nodePort for " + svcName.String(),
				ip:       "",
				port:     svcInfo.nodePort,
				protocol: protocol,
			}
			if proxier.portsMap[lp] != nil {
				glog.V(4).Infof("Port %s was open before and is still needed", lp.String())
				replacementPortsMap[lp] = proxier.portsMap[lp]
			} else {
				socket, err := proxier.portMapper.OpenLocalPort(&lp)
				if err != nil {
					glog.Errorf("can't open %s, skipping this nodePort: %v", lp.String(), err)
					continue
				}
				if lp.protocol == "udp" {
					proxier.clearUdpConntrackForPort(lp.port)
				}
				replacementPortsMap[lp] = socket
			} // We're holding the port, so it's OK to install iptables rules.

			args := []string{
				"-A", string(kubeNodePortsChain),
				"-m", "comment", "--comment", svcName.String(),
				"-m", protocol, "-p", protocol,
				"--dport", fmt.Sprintf("%d", svcInfo.nodePort),
			}
			if !svcInfo.onlyNodeLocalEndpoints {
				// Nodeports need SNAT, unless they're local.
				writeLine(natRules, append(args, "-j", string(KubeMarkMasqChain))...)
				// Jump to the service chain.
				writeLine(natRules, append(args, "-j", string(svcChain))...)
			} else {
				// TODO: Make all nodePorts jump to the firewall chain.
				// Currently we only create it for loadbalancers (#33586).
				writeLine(natRules, append(args, "-j", string(svcXlbChain))...)
			}
		}

		// If the service has no endpoints then reject packets.
		if len(proxier.endpointsMap[svcName]) == 0 {
			writeLine(filterRules,
				"-A", string(kubeServicesChain),
				"-m", "comment", "--comment", fmt.Sprintf(`"%s has no endpoints"`, svcName.String()),
				"-m", protocol, "-p", protocol,
				"-d", fmt.Sprintf("%s/32", svcInfo.clusterIP.String()),
				"--dport", fmt.Sprintf("%d", svcInfo.port),
				"-j", "REJECT",
			)
			continue
		}

		// Generate the per-endpoint chains.  We do this in multiple passes so we
		// can group rules together.
		// These two slices parallel each other - keep in sync
		endpoints := make([]*endpointsInfo, 0)
		endpointChains := make([]utiliptables.Chain, 0)
		for _, ep := range proxier.endpointsMap[svcName] {
			endpoints = append(endpoints, ep)
			endpointChain := servicePortEndpointChainName(svcName, protocol, ep.ip)
			endpointChains = append(endpointChains, endpointChain)

			// Create the endpoint chain, retaining counters if possible.
			if chain, ok := existingNATChains[utiliptables.Chain(endpointChain)]; ok {
				writeLine(natChains, chain)
			} else {
				writeLine(natChains, utiliptables.MakeChainLine(endpointChain))
			}
			activeNATChains[endpointChain] = true
		}

		// First write session affinity rules, if applicable.
		if svcInfo.sessionAffinityType == api.ServiceAffinityClientIP {
			for _, endpointChain := range endpointChains {
				writeLine(natRules,
					"-A", string(svcChain),
					"-m", "comment", "--comment", svcName.String(),
					"-m", "recent", "--name", string(endpointChain),
					"--rcheck", "--seconds", fmt.Sprintf("%d", svcInfo.stickyMaxAgeMinutes*60), "--reap",
					"-j", string(endpointChain))
			}
		}

		// Now write loadbalancing & DNAT rules.
		n := len(endpointChains)
		for i, endpointChain := range endpointChains {
			// Balancing rules in the per-service chain.
			args := []string{
				"-A", string(svcChain),
				"-m", "comment", "--comment", svcName.String(),
			}
			if i < (n - 1) {
				// Each rule is a probabilistic match.
				args = append(args,
					"-m", "statistic",
					"--mode", "random",
					"--probability", fmt.Sprintf("%0.5f", 1.0/float64(n-i)))
			}
			// The final (or only if n == 1) rule is a guaranteed match.
			args = append(args, "-j", string(endpointChain))
			writeLine(natRules, args...)

			// Rules in the per-endpoint chain.
			args = []string{
				"-A", string(endpointChain),
				"-m", "comment", "--comment", svcName.String(),
			}
			// Handle traffic that loops back to the originator with SNAT.
			writeLine(natRules, append(args,
				"-s", fmt.Sprintf("%s/32", strings.Split(endpoints[i].ip, ":")[0]),
				"-j", string(KubeMarkMasqChain))...)
			// Update client-affinity lists.
			if svcInfo.sessionAffinityType == api.ServiceAffinityClientIP {
				args = append(args, "-m", "recent", "--name", string(endpointChain), "--set")
			}
			// DNAT to final destination.
			args = append(args, "-m", protocol, "-p", protocol, "-j", "DNAT", "--to-destination", endpoints[i].ip)
			writeLine(natRules, args...)
		}

		// The logic below this applies only if this service is marked as OnlyLocal
		if !svcInfo.onlyNodeLocalEndpoints {
			continue
		}

		// Now write ingress loadbalancing & DNAT rules only for services that have a localOnly annotation
		// TODO - This logic may be combinable with the block above that creates the svc balancer chain
		localEndpoints := make([]*endpointsInfo, 0)
		localEndpointChains := make([]utiliptables.Chain, 0)
		for i := range endpointChains {
			if endpoints[i].localEndpoint {
				// These slices parallel each other; must be kept in sync
				localEndpoints = append(localEndpoints, endpoints[i])
				localEndpointChains = append(localEndpointChains, endpointChains[i])
			}
		}
		// First rule in the chain redirects all pod -> external vip traffic to the
		// Service's ClusterIP instead. This happens whether or not we have local
		// endpoints; only if clusterCIDR is specified
		if len(proxier.clusterCIDR) > 0 {
			args = []string{
				"-A", string(svcXlbChain),
				"-m", "comment", "--comment",
				fmt.Sprintf(`"Redirect pods trying to reach external loadbalancer VIP to clusterIP"`),
				"-s", proxier.clusterCIDR,
				"-j", string(svcChain),
			}
			writeLine(natRules, args...)
		}

		numLocalEndpoints := len(localEndpointChains)
		if numLocalEndpoints == 0 {
			// Blackhole all traffic since there are no local endpoints
			args := []string{
				"-A", string(svcXlbChain),
				"-m", "comment", "--comment",
				fmt.Sprintf(`"%s has no local endpoints"`, svcName.String()),
				"-j",
				string(KubeMarkDropChain),
			}
			writeLine(natRules, args...)
		} else {
			// Setup probability filter rules only over local endpoints
			for i, endpointChain := range localEndpointChains {
				// Balancing rules in the per-service chain.
				args := []string{
					"-A", string(svcXlbChain),
					"-m", "comment", "--comment",
					fmt.Sprintf(`"Balancing rule %d for %s"`, i, svcName.String()),
				}
				if i < (numLocalEndpoints - 1) {
					// Each rule is a probabilistic match.
					args = append(args,
						"-m", "statistic",
						"--mode", "random",
						"--probability", fmt.Sprintf("%0.5f", 1.0/float64(numLocalEndpoints-i)))
				}
				// The final (or only if n == 1) rule is a guaranteed match.
				args = append(args, "-j", string(endpointChain))
				writeLine(natRules, args...)
			}
		}
	}

	// Delete chains no longer in use.
	for chain := range existingNATChains {
		if !activeNATChains[chain] {
			chainString := string(chain)
			if !strings.HasPrefix(chainString, "KUBE-SVC-") && !strings.HasPrefix(chainString, "KUBE-SEP-") && !strings.HasPrefix(chainString, "KUBE-FW-") && !strings.HasPrefix(chainString, "KUBE-XLB-") {
				// Ignore chains that aren't ours.
				continue
			}
			// We must (as per iptables) write a chain-line for it, which has
			// the nice effect of flushing the chain.  Then we can remove the
			// chain.
			writeLine(natChains, existingNATChains[chain])
			writeLine(natRules, "-X", chainString)
		}
	}

	// Finally, tail-call to the nodeports chain.  This needs to be after all
	// other service portal rules.
	writeLine(natRules,
		"-A", string(kubeServicesChain),
		"-m", "comment", "--comment", `"kubernetes service nodeports; NOTE: this must be the last rule in this chain"`,
		"-m", "addrtype", "--dst-type", "LOCAL",
		"-j", string(kubeNodePortsChain))

	// Write the end-of-table markers.
	writeLine(filterRules, "COMMIT")
	writeLine(natRules, "COMMIT")

	// Sync rules.
	// NOTE: NoFlushTables is used so we don't flush non-kubernetes chains in the table.
	filterLines := append(filterChains.Bytes(), filterRules.Bytes()...)
	natLines := append(natChains.Bytes(), natRules.Bytes()...)
	lines := append(filterLines, natLines...)

	glog.V(3).Infof("Restoring iptables rules: %s", lines)
	err = proxier.iptables.RestoreAll(lines, utiliptables.NoFlushTables, utiliptables.RestoreCounters)
	if err != nil {
		glog.Errorf("Failed to execute iptables-restore: %v\nRules:\n%s", err, lines)
		// Revert new local ports.
		revertPorts(replacementPortsMap, proxier.portsMap)
		return
	}

	// Close old local ports and save new ones.
	for k, v := range proxier.portsMap {
		if replacementPortsMap[k] == nil {
			v.Close()
		}
	}
	proxier.portsMap = replacementPortsMap
}

感谢各位的阅读,以上就是“kube-proxy怎么使用”的内容了,经过本文的学习后,相信大家对kube-proxy怎么使用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!

本文标题:kube-proxy怎么使用
本文来源:/article6/ipooig.html

成都网站建设公司_创新互联,为您提供外贸网站建设品牌网站制作网站营销品牌网站设计面包屑导航云服务器

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

搜索引擎优化