数据分析:日活跃的分析使用核心用户规模

2021-09-10    分类: 网站建设

刚才所提到的核心用户规模,之所以使用日活跃用户来衡量,原因在于,以每日作为一个衡量的单位比较客观反映用户的游戏积极性,以日作为统计长度,恰好符合用户游戏的最短的周期性循环。那么在日常的分析中,我们可以简单计算一个周期内,每日新登用户和活跃用户的关系比例,看一个长期趋势,一定程度上反映了目前核心用户的规模增长情况。

那这里有人会问,怎么看待回流用户的作用呢实际上,回流用户对于日活跃用户的贡献比例是极低的,但是该部分的贡献却不能够忽略,因为在重大节日、渠道推广等各种营销手段上线以后,会对于游戏日活跃产生一个很大的贡献值。但是一般而言,该部分的贡献比例比较低。


说了这么多,那么老用户和回流用户的定义究竟是怎样的这里只给出参考的标准:回流用户:统计日登录游戏,但是之前7天未登录过游戏的历史用户(所谓历史用户就是非新登用户,历史上登录过游戏的用户)老活跃用户:如果粗略的计算,可以如下计算:


•日活跃用户数-日新登用户数-日回流用户当然如果要精确衡量老用户规模,可以给予老用户定义,例如:统计日登录游戏的用户,在此之前7日内再次登录过游戏(注意此处没有严格区分新登用户的情况,即也把新登用户的次日登录的部分计算为老用户,可按照实际需要提出此部分对于老用户的影响)。


下面我们通过几个曲线来简单说明一下怎么利用DaU分析问题。首先我们要得到划定时间区段的DaU和DNU的曲线图,我们DaU和DNU的走势基本上是一致的,DNU对于DaU的影响还是比较大的,但是随着后期波动的减小,我们发现从106天到280天,两条曲线是呈现缓慢的下滑趋势的,但是这不足以说明问题,仔细观察,我们发现夹在两条曲线之间的面积是逐渐缩小的,而这部分面积就是DaU中除去DNU的部分,即我们可以认定是老用户的部分,这个面积的缩小,意味着用户的流失加剧,活跃用户的控制不得当,此外,也可能是新用户在短期内留存率不高引起的,那就需要结合留存率来看问题了,这里不讨论。

可以很明显的看到,这个差值在逐渐走低,也就是说用户的活跃度是在下滑的,这个下滑可以认定是后期渠道导入用户质量不高造成的,也可以是产品本身的用户周期问题造成的。但是断定一点的是,这个时期,需要紧急的拉动用户规模增长,因此,可以看到,随后进行了两次相应的拉动,其规模有所提升。

此外,我们还要看一下新用户所占的比例曲线,如上文所述,基本维持在40%的水平上,但是有一个值得关注的是,当处于一个相对的稳定期时,即使有大范围的推广和拉动新登增长,那么这个比值的变化也不会太剧烈,唯一剧烈的原因就在于,原本游戏的老活跃用户规模就在下滑,流失较多。


当然了,用户的流失、产品的粘性等等都可以通过对DaU不同角度的解析获得相应的信息,这点也是要和其他数据结合来分析的,比如次日留存率,用户流失率、启动次数、登录时长分布等数据,找出来DaU中的虚假用户,例如1-3s用户非常多,那么在正常的网络和设计情况下,这种数据就可能是很多假用户造成的,也就是作弊行为。

再比如的情况,我们可以通过事件管理,区分推广和非推广时期的用户增长对DaU的影响,比如自然增长时期的新登用户对DaU的影响,判断DaU的质量,渠道的质量;或者推广时期的新登用户对DaU的影响情况分析。如果需要的也可以结合用户的登录习惯,比如登录次数,登录天数等等数据进行忠诚活跃用户的阈值确定,以此来保证DaU的质量。其实在DaU的背后,隐藏的问题和分析的要素很多,这个也是需要结合自己的业务需要来进行的,这里只是给大家提供一个分析的思路和方式。至于具体的问题,还要结合具体需求进行分析。不过话说回来,DaU的解析离不开细分数据和其他数据的支持,但是也是不一定一直细分进行数据的分析。

名称栏目:数据分析:日活跃的分析使用核心用户规模
本文路径:/news13/126113.html

成都网站建设公司_创新互联,为您提供搜索引擎优化网站建设外贸建站服务器托管小程序开发微信公众号

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

外贸网站建设