如何在GPU上加速数据科学

2021-02-13    分类: 网站建设

笔者按,数据科学家需要算力。无论您是用 pandas 处理一个大数据集,还是用 Numpy 在一个大矩阵上运行一些计算,您都需要一台强大的机器,以便在合理的时间内完成这项工作。

在过去的几年中,数据科学家常用的 Python 库已经非常擅长利用 CPU 能力。

Pandas 的基础代码是用 C 语言编写的,它可以很好地处理大小超过 100GB 的数据集。如果您没有足够的 RAM 来容纳这样的数据集,那么您可以使用分块功能,它很方便,可以一次处理一个数据块。

GPUs vs CPUs:并行处理

有了大量的数据,CPU 就不会切断它了。

一个超过 100GB 的数据集将有许多数据点,数据点的数值在数百万甚至数十亿的范围内。有了这么多的数据点要处理,不管你的 CPU 有多快,它都没有足够的内核来进行有效的并行处理。如果你的 CPU 有 20 个内核(这将是相当昂贵的 CPU),你一次只能处理 20 个数据点!

CPU 在时钟频率更重要的任务中会更好——或者根本没有 GPU 实现。如果你尝试执行的流程有一个 GPU 实现,且该任务可以从并行处理中受益,那么 GPU 将更加有效。

使用 Scikit-Learn 在 CPU 上运行 DBSCAN 的结果

GPU 上带 Rapids 的 DBSCAN

现在,让我们用 Rapids 进行加速!

首先,我们将把数据转换为 pandas.DataFrame 并使用它创建一个 cudf.DataFrame。pandas.DataFrame 无缝转换成 cudf.DataFrame,数据格式无任何更改。

  1. import pandas as pd  
  2. import cudf  
  3. X_df = pd.DataFrame({'fea%d'%i: X[:, i] for i in range(X.shape[1])})  
  4. X_gpu = cudf.DataFrame.from_pandas(X_df) 

然后我们将从 cuML 导入并初始化一个特殊版本的 DBSCAN,它是 GPU 加速的版本。DBSCAN 的 cuML 版本的函数格式与 Scikit-Learn 的函数格式完全相同:相同的参数、相同的样式、相同的函数。

  1. from cuml import DBSCAN as cumlDBSCAN  
  2. db_gpu = cumlDBSCAN(eps=0.6, min_samples=2) 

最后,我们可以在测量运行时间的同时运行 GPU DBSCAN 的预测函数。

  1. %%time  
  2. y_db_gpu = db_gpu.fit_predict(X_gpu) 

GPU 版本的运行时间为 4.22 秒,几乎加速了 2 倍。由于我们使用的是相同的算法,因此结果图也与 CPU 版本完全相同。

如何在GPU上加速数据科学

使用 cuML 在 GPU 上运行 DBSCAN 的结果

使用 Rapids GPU 获得超高速

我们从 Rapids 获得的加速量取决于我们正在处理的数据量。一个好的经验法则是,较大的数据集将更加受益于 GPU 加速。在 CPU 和 GPU 之间传输数据有一些开销时间——对于较大的数据集,开销时间变得更「值得」。

我们可以用一个简单的例子来说明这一点。

我们将创建一个随机数的 Numpy 数组并对其应用 DBSCAN。我们将比较常规 CPU DBSCAN 和 cuML 的 GPU 版本的速度,同时增加和减少数据点的数量,以了解它如何影响我们的运行时间。

下面的代码说明如何进行测试:

  1. import numpy as np  
  2.  
  3. n_rows, n_cols = 10000, 100  
  4. X = np.random.rand(n_rows, n_cols)  
  5. print(X.shape)  
  6.  
  7. X_df = pd.DataFrame({'fea%d'%i: X[:, i] for i in range(X.shape[1])})  
  8. X_gpu = cudf.DataFrame.from_pandas(X_df)  
  9.  
  10. db = DBSCAN(eps=3, min_samples=2)  
  11. db_gpu = cumlDBSCAN(eps=3, min_samples=2)  
  12.  
  13. %%time  
  14. y_db = db.fit_predict(X) 
  15.  
  16. %%time  
  17. y_db_gpu = db_gpu.fit_predict(X_gpu) 

检查下面的 Matplotlib 结果图:

如何在GPU上加速数据科学

当使用 GPU 而不是 CPU 时,数量会急剧增加。即使在 10000 点(最左边),我们的速度仍然是 4.54x。在更高的一端,1 千万点,我们切换到 GPU 时的速度是 88.04x!

本文名称:如何在GPU上加速数据科学
URL标题:/news46/100796.html

成都网站建设公司_创新互联,为您提供网站策划软件开发标签优化网站改版网站设计服务器托管

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

成都seo排名网站优化