商业智能与大数据应用

2021-09-17    分类: 网站建设

BI商业智能与大数据应用的区别;
BI(Business Intelligence),即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
伴随着BI的发展,ETL,数据集成平台等概念相继提出。ETL(Extraction Transformation Loading),即数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关转化,以此来满足BI、数据仓库对数据格式和内容挖掘的要求。

1数据集成平台
数据集成平台的基础工作与ETL有很大的相似性,其主要功能是实现不同系统不同格式数据地抽取,并且按照目标需求转化成为相应的格式。数据集成开始是点对点的,慢慢地发现这种模式对于系统之间,不同所有权的企业数据流向以及数据标准控制很难,为此,诞生了对统一企业数据平台的需求,来实现企业级之间的数据交互。
数据集成平台就像网络中的Hub,可以连接所有应用系统,实现系统之间数据的互通有无。数据集成平台以BI、数据仓库需求而产生,现在已经跨越了最初的需求,上升到了一个更高的阶段。
2.大数据
如今大数据应用更多关注非结构化数据,更多谈论互联网,Twitter、Facebook、博客等非结构化数据,如此理解大数据应用,显然就有些走偏了。结构化数据也属于大数据,且呈现出相同的特点和特征,如数据量大,增长越来越快,对数据处理要求高等。结构化数据是广义大
数据中含金量或者价值密度高的一部分数据,与之相比,非结构化数据含金量高但价值密度低。在Hadoop平台出现之前,没有人谈论大数据。数据应用主要是结构化数据,多采用IBM、HP等老牌厂商的小型机或服务器设备。
采用传统方法处理这些价值密度低的非结构化数据,被认为是不值得的,因为其产出实在是有限。Hadoop平台出现之后,提供了一种开放的、廉价的、基于普通商业硬件的平台,其核心是分布式大规模并行处理,从而为非结构化数据处理创造条件。
大数据应用的数据来源应该包括结构化数据,如各种数据库、各种结构化文件、消息队列和应用系统数据等,其次才是非结构化数据,又可以进一步细分为两部分,一是社交媒体,如Twitter、Facebook、博客等产生的数据,包括用户点击的习惯/
特点,发表的评论,评论的特点,网民之间的关系等,这些都构成了大数据来源。另外一部分数据,也是数据量比较大的数据,就是机器设备以及传感器所产生的数据。以电信行业为例,CDR、呼叫记录,这些数据都属于原始传感器数据,主要来自路由器或者基站。此外,手机的置传感器,各种手持设备、门禁系统,摄像头、ATM机等,其数据量也非常巨大。
3.大数据分析工具
对于分析大数据的工具,目前所有的分析工具都侧重于结构化分析,例如针对社交媒体评论方向的分析,根据特定的词频或者语义,通过统计正面/负面评论的比例,来确定评论性质。如果有一个应用系统是接收结构化数据的,例如一个分析系统,接收这些语义就可以便于分析。
4.大数据应用实例
让大数据应用落地,其中的关键在于与行业应用的深度融合。
1)公安行业
公安行业的视频影像处理是一个特定应用领域,传统BI、ETL工具拿这些数据没有办法,采用分布式Hadoop进行处理能够带来很
好的效益,因为Hadoop可以处理数据量足够大。公安行业实际上已采集了大量视频影像数据,利用这些数据,可以追踪一个嫌疑犯的行踪,什么时间在全国哪些地区出现过。这些应用不可能单纯依靠人的力量,需要借助人脸识别、图像识别技术、模式处理,数据压缩等技术,需要海量处理软件,抓出相关特征,帮助公安人员提高工作效率。
2)电信行业
在电信行业,计费系统实际上是对各种数据进行整合后的结果,是一个缩小的数据。借助大数据应用,运营商可以原始大数据进行
分析,例如分析传感器数据是否有异常,从而判断设备异常等,这些都是一些用传统BI工具无法实现的分析,其结果往往会出乎意料,帮助运营商提高服务水平以及用户的满意度。
3)互联网行业
在互联网行业,通过分析手机上网轨迹,可以分析了解客户群,了解用户的偏好,此外,获取地理位置的信息,也具有特定价值。
从这些行业大数据应用分析来看,一个是视频影像处理,一个是日志分析,另外一个是处理特定文件格式的分析处理,彼此之间显然没有任何通
用性的特点,其共同点就是利用了廉价的大数据处理平台。
大数据处理的十大工具;
大数据的日益增长,给企业管理大量的数据带来了挑战的同时也带来了一些机遇。下面是用于信息化管理的大数据工具列表:
1.ApacheHive
Hive是一个建立在hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件
进行查询和处理等。Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。
2JaspersoftBI套件
Jaspersoft包是一个通过数据库列生成报表的开源软件。行业领导者发现Jaspersoft软件是的,许多企业已经使用它来将SQL表转化为pdf,,这
使每个人都可以在会议上对其进行审议。另外,JasperReports提供了一个连接配置单元来替代HBase。
3.1010data
1010data创立于2000年,是一个总部设在纽约的分析型云服务,旨在为华尔街的客户提供服务,甚至包括NYSEEuronext、游戏和电信的客户。
它在设计上支持可伸缩性的大规模并行处理。它也有它自己的查询语言,支持SQL函数和广泛的查询类型,包括图和时间序列分析。这个私有云的方法减少了客户在基础设施管理和扩展方面的压力。
4.Actian
Actian之前的名字叫做IngresCorp,它拥有超过一万客户而且正在扩增。它通过Vectorwise以及对ParAccel实现了扩展。这些发展分别导致了
ActianVector和ActianMatrix的创建。它有Apache,Cloudera,Hortonworks以及其他发行版本可供选择。
5.PentahoBusinessAnalytics
从某种意义上说,Pentaho与Jaspersoft相比起来,尽管Pentaho开始于报告生成引擎,但它目前通过简化新来源中获取信息的过程来支持大数据处
理。Pentaho的工具可以连接到NoSQL数据库,例如MongoDB和Cassandra。PeterWayner指出,PentahoData(一个更有趣的图形编程界面工具)有很多内置模块,你可以把它们拖放到一个图片上,然后将它们连接起来。
6.KarmasphereStudioandAnalyst
KarsmasphereStudio是一组构建在Eclipse上的插件,它是一个更易于创建和运行Hadoop任务的专用IDE。在配置一个Hadoop工作时,
Karmasphere工具将引导您完成每个步骤并显示部分结果。当出现所有数据处于同一个Hadoop集群的情况时,KarmaspehereAnalyst旨在简化
筛选的过程,。
7.Cloudera
Cloudera正在努力为开源Hadoop,提供支持,同时将数据处理框架延伸到一个全面的“企业数据中心”范畴,这个数据中心可以作为选目标和管
理企业所有数据的中心点。Hadoop可以作为目标数据仓库,高效的数据平台,或现有数据仓库的ETL来源。企业规模可以用作集成Hadoop与传
统数据仓库的基础。Cloudera致力于成为数据管理的“重心”。
8.HPVerticaAnalyticsPlatformVersion7
HP提供了用于加载Hadoop软件发行版所需的参考硬件配置,因为它本身并没有自己的Hadoop版本。计算机行业领袖将其大数据平台架构命名为
HAVEn(意为Hadoop,Autonomy,Vertica,EnterpriseSecurityand“n”applications)。惠普在Vertica7版本中增加了一个“FlexZone”,允许用
户在定义数据库方案以及相关分析、报告之前探索大型数据集中的数据。这个版本通过使用HCatalog作为元数据存储,与Hadoop集成后为用户
提供了一种探索HDFS数据表格视图的方法。
9.TalendOpenStudio
Talend’s工具用于协助进行数据质量、数据集成和数据管理等方面工作。Talend是一个统一的平台,它通过提供一个统一的,跨企业边界生命周
期管理的环境,使数据管理和应用更简单便捷。这种设计可以帮助企业构建灵活、高性能的企业架构,在次架构下,集成并启用百分之百开源服务的分布式应用程序变为可能。
10.ApacheSpark
ApacheSpark是Hadoop开源生态系统的新成员。它提供了一个比Hive更快的查询引擎,因为它依赖于自己的数据处理框架而不是依靠Hadoop的
HDFS服务。同时,它还用于事件流处理、实时查询和机器学习等方面。

名称栏目:商业智能与大数据应用
标题链接:/news7/127107.html

成都网站建设公司_创新互联,为您提供网站维护动态网站网站排名外贸网站建设网站营销营销型网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联

网站托管运营