2021-03-06 分类: 网站建设
一般情况下,要使大数据项目成功,至少需要两件事:其一,知道需要什么可操作的数据;其二,获得正确的数据来进行分析和利用,以实现预期目标。
6. 节约企业数据仓库资源
最后一个优点是,正如上面来自PwC的说明所示,数据湖可以作为数据仓库(EDW)的中转区域。
然后,它仅用于将相关数据传递到仓库,从而节省EDW资源。
数据湖的挑战、风险和演变
大数据湖有诸多的好处,同时,也有风险和挑战需应对。
如果没有正确的战略设计,并考虑到必要的目标,数据湖可能成为数据沼泽。这也是为什么企业从非常传统的数据湖方法转向面向目标和业务导向的方法的原因。
显然,应该从业务驱动和战略方针着手来处理数据湖。然而,传统上,这些数据往往是从不断上升的数据量角度和最终所有数据都具有潜在价值的观点来看待的。
虽然这个价值确实是有潜力的,但相当多的公司表现得像数据囤积者。此外,公司是否需要一个数据湖,如果需要,是否可以从数据湖中获得价值。
Gartner2015年的一份报告中显示,一些公司的Hadoop((数据湖架构的者)是过犹不及的,技术上的差距是阻碍发展的主要原因。
大数据湖的规模
由于大数据量和大数据使用量不断增长,大数据规划的广度、深度和包容性都在增加,因此数据湖的大小显然也在不断增长。
一篇Dimensional Research2018年大数据趋势和挑战报告的博客文章指出,平均数据湖大小超过100太字节的组织比例从2017年的36%增长到2018年的44%( 一年内增加22%)。这种趋势只会持续下去,而且是大数据处理向云转变的众多驱动因素之一。
然而,难题依然存在:如何从所有这些数据中获取价值。决策和行动是市场如何发展的关键驱动力。
确保数据湖不会变成数据沼泽
让我们更深入地研究这些数据沼泽。如前所述,在数据湖的早期,重点是大数据的容量方面,许多企业实际上使用数据湖作为转储数据的地方。
这导致了数据沼泽的现象,需采取适当的方法保持数据湖的清洁。
直到今天,仍然听到一些组织提出常规性的问题,比如:“我应该用一个数据湖来替换我的数据中心吗?”。数据湖经常与数据中心相比较,虽然理解这些差异很重要,但问题是使用什么,什么时候使用并不是重点,正如咨询师所言,你真正需要的是什么,要视情况而定。
我们的旨在通过数据仓库、数据分析和商业智能环境来解决它们所适应的商业智能环境的问题。
当数据湖的数据情况变得清晰无误时,就不难确保它不会变成一个数据沼泽。这种讨论已经进行了很长时间,数据湖需要更多的策略和关注。
改变数据湖的要素:云、分析、价值和AI/ML
当然,数据湖也不像以前所触及的那样了。在早期,数据湖本质上是添加Hadoop,并保留所有现有的内容,而现在,我们可以更多地使用云中的数据。
最初,一个数据湖是给那些有技能和能力的用户使用:找到他们想要的数据,然后能够使用模式在读技术来处理这个问题。幸运的是,SQL正在进入数据湖,我们开始学习如何对其中的不同岛屿建模,让用户直接访问数据湖中的数据。
云的增长速度和它在业务中总体增长速度一样快。很明显,数据湖的未来意味着云,尽管某些行业也会有例外,其中包括监管问题,以及传统上对公众云采取更为谨慎的做法。
一些企业显然也从过去所犯的错误中吸取了教训,最后,随着人工智能和机器学习变得更加重要,重点更多的放在结果和价值上,以及对近实时分析、高级分析和可视化的需求,人们更加关注结果和价值。
我们还看到数据湖向商业智能解决方案转变。简单地总结一下:数据湖景观发展迅速,其本质仍然是将数据转化为价值和更好地实现这一目标的手段,技术前沿的大量趋势和经验教训,使得我们很难将数据湖的过去与现在进行比较,更不用说未来了。许多组织表示,它们计划部署一个数据湖,并转向云,这一未来看上去相当光明。
要知道,当数据湖变得流行时,大数据仍然是一个热门词,至少大数据已经变得无所不在了。大数据就是数据,问题是如何处理它。总的来说,数据的成熟度已经提高,新一代的专家知道,大数据分析是获得价值的关键所在,你对待数据的方式与传统数据仓库时代不同-关于利用大数据的思维方式和文化已经在酝酿。
网站标题:数据湖里没有“水怪”,有的是,,,
浏览路径:/news12/104562.html
成都网站建设公司_创新互联,为您提供定制网站、网站维护、云服务器、软件开发、微信公众号、全网营销推广
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联
猜你还喜欢下面的内容