2021-03-01 分类: 网站建设
数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。
01 数据仓库的特点
02 数据仓库有如下要求
数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层——数据获取、数据仓库、数据应用:
数据模型的层次划分通过上图,我们能够很容易的看出在整个数据仓库的建模过程中,我们需要经历一般四个过程:
因此,在整个数据仓库的模型的设计和架构中,既涉及到业务知识,也涉及到了具体的技术,我们既需要了解丰富的行业经验,同时,也需要一定的信息技术来帮助我们实现我们的数据模型,最重要的是,我们还需要一个非常适用的方法论,来指导我们自己针对我们的业务进行抽象,处理,生成各个阶段的模型。
2.2数据主题:
数据主题数据模型的建设,维度的选择,是为了满足数据主题的需求。数据主题通常就是业务需求的提炼。
2.3数据报表:
报表几乎是每个数据仓库的必不可少的一类数据应用,将聚合数据和多维分析数据展示到报表,提供了最为简单和直观的数据。
这里的数据汇总指的是基于特定需求的简单汇总(基于多维数据的聚合体现在多维数据模型中),简单汇总可以是网站的总Pageviews、Visits、Unique Visitors等汇总数据,也可以是Avg. time on page、Avg. time on site等平均数据,这些数据可以直接地展示于报表上。
数据报表示例2.4数据集市和开放API
数据集市(Data Mart) ,也叫数据市场,可以理解为字段非常多的宽表,比如销售表,除了包含订单和金额等必需的字段,还包含可能使用的产品信息集合、用户信息集合、甚至销售人员的信息,是数据仓库的核心组成部分。
开放API,指对外开放的查询等接口。
数据质量中心:
元数据管理
元数据(Meta Date),其实应该叫做解释性数据,或者数据字典,即数据的数据。主要记录数据仓库中模型的定义、各层级间的映射关系、监控数据仓库的数据状态及ETL的任务运行状态。一般会通过元数据资料库(Metadata Repository)来统一地存储和管理元数据,其主要目的是使数据仓库的设计、部署、操作和管理能达成协同和一致。
当前题目:数据分析必不可少之数据仓库!
URL网址:/news32/103682.html
成都网站建设公司_创新互联,为您提供标签优化、自适应网站、外贸网站建设、小程序开发、星空体育app最新版本(2024已更新)、网站策划
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联
猜你还喜欢下面的内容